Exhibiting cross-diffusion-induced patterns for reaction-diffusion systems on evolving domains and surfaces.
نویسندگان
چکیده
The aim of this manuscript is to present for the first time the application of the finite element method for solving reaction-diffusion systems with cross-diffusion on continuously evolving domains and surfaces. Furthermore we present pattern formation generated by the reaction-diffusion system with cross-diffusion on evolving domains and surfaces. A two-component reaction-diffusion system with linear cross-diffusion in both u and v is presented. The finite element method is based on the approximation of the domain or surface by a triangulated domain or surface consisting of a union of triangles. For surfaces, the vertices of the triangulation lie on the continuous surface. A finite element space of functions is then defined by taking the continuous functions which are linear affine on each simplex of the triangulated domain or surface. To demonstrate the role of cross-diffusion to the theory of pattern formation, we compute patterns with model kinetic parameter values that belong only to the cross-diffusion parameter space; these do not belong to the standard parameter space for classical reaction-diffusion systems. Numerical results exhibited show the robustness, flexibility, versatility, and generality of our methodology; the methodology can deal with complicated evolution laws of the domain and surface, and these include uniform isotropic and anisotropic growth profiles as well as those profiles driven by chemical concentrations residing in the domain or on the surface.
منابع مشابه
Stability analysis of reaction-diffusion models on evolving domains: the effects of cross-diffusion
This article presents stability analytical results of a two component reaction-diffusion system with linear cross-diffusion posed on continuously evolving domains. First the model system is mapped from a continuously evolving domain to a reference stationary frame resulting in a system of partial differential equations with time-dependent coefficients. Second, by employing appropriately asympto...
متن کاملCharacterization of Turing Diffusion-driven Instability on Evolving Domains
In this paper we establish a general theoretical framework for Turing diffusion-driven instability for reaction-diffusion systems on time-dependent evolving domains. The main result is that Turing diffusion-driven instability for reaction-diffusion systems on evolving domains is characterised by Lyapunov exponents of the evolution family associated with the linearised system (obtained by linear...
متن کاملGlobal existence for semilinear reaction-diffusion systems on evolving domains.
We present global existence results for solutions of reaction-diffusion systems on evolving domains. Global existence results for a class of reaction-diffusion systems on fixed domains are extended to the same systems posed on spatially linear isotropically evolving domains. The results hold without any assumptions on the sign of the growth rate. The analysis is valid for many systems that comm...
متن کاملFully implicit time-stepping schemes and non-linear solvers for systems of reaction-diffusion equations
In this article we present robust, efficient and accurate fully implicit time-stepping schemes and nonlinear solvers for systems of reaction-diffusion equations. The applications of reaction-diffusion systems is abundant in the literature, from modelling pattern formation in developmental biology to cancer research, wound healing, tissue and bone regeneration and cell motility. Therefore, it is...
متن کاملThe surface finite element method for pattern formation on evolving biological surfaces.
In this article we propose models and a numerical method for pattern formation on evolving curved surfaces. We formulate reaction-diffusion equations on evolving surfaces using the material transport formula, surface gradients and diffusive conservation laws. The evolution of the surface is defined by a material surface velocity. The numerical method is based on the evolving surface finite elem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 90 4 شماره
صفحات -
تاریخ انتشار 2014